Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nat Commun ; 14(1): 824, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2244271

ABSTRACT

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.


Subject(s)
Antibodies, Neutralizing , BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , Antiviral Agents , Breakthrough Infections , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Cell Rep Med ; : 100850, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2184476

ABSTRACT

The emergence of Omicron sublineages impacts the therapeutic efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs). Here, we evaluate neutralization and antibody-dependent cellular cytotoxicity (ADCC) activities of 6 therapeutic mAbs against Delta, BA.2, BA.4, and BA.5. The Omicron subvariants escape most antibodies but remain sensitive to bebtelovimab and cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 display identical neutralization profiles. Sotrovimab is the most efficient at eliciting ADCC. We also analyze 121 sera from 40 immunocompromised individuals up to 6 months after infusion of Ronapreve (imdevimab + casirivimab) or Evusheld (cilgavimab + tixagevimab). Sera from Ronapreve-treated individuals do not neutralize Omicron subvariants. Evusheld-treated individuals neutralize BA.2 and BA.5, but titers are reduced. A longitudinal evaluation of sera from Evusheld-treated patients reveals a slow decay of mAb levels and neutralization, which is faster against BA.5. Our data shed light on antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.

3.
Med (N Y) ; 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2159549

ABSTRACT

BACKGROUND: Since early 2022, Omicron BA.1 has been eclipsed by BA.2, which was in turn outcompeted by BA.5, which displays enhanced antibody escape properties. METHODS: Here, we evaluated the duration of the neutralizing antibody (Nab) response, up to 18 months after Pfizer BNT162b2 vaccination, in individuals with or without BA.1/BA.2 breakthrough infection. We measured neutralization of the ancestral D614G lineage, Delta, and Omicron BA.1, BA.2, and BA.5 variants in 300 sera and 35 nasal swabs from 27 individuals. FINDINGS: Upon vaccination, serum Nab titers were decreased by 10-, 15-, and 25-fold for BA.1, BA.2, and BA.5, respectively, compared with D614G. We estimated that, after boosting, the duration of neutralization was markedly shortened from 11.5 months with D614G to 5.5 months with BA.5. After breakthrough, we observed a sharp increase of Nabs against Omicron subvariants, followed by a plateau and a slow decline after 5-6 months. In nasal swabs, infection, but not vaccination, triggered a strong immunoglobulin A (IgA) response and a detectable Omicron-neutralizing activity. CONCLUSIONS: BA.5 spread is partly due to abbreviated vaccine efficacy, particularly in individuals who were not infected with previous Omicron variants. FUNDING: Work in O.S.'s laboratory is funded by the Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, and IDISCOVR, Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant no. ANR-10-LABX-62-IBEID), HERA european funding and the NIH PICREID (grant no U01AI151758).

4.
Med (New York, N.Y.) ; 2022.
Article in English | EuropePMC | ID: covidwho-2046443

ABSTRACT

Background Since early 2022, Omicron BA.1 has been eclipsed by BA.2, which was in turn outcompeted by BA.5, that displays enhanced antibody escape properties. Methods Here, we evaluated the duration of the neutralizing antibody (Nab) response, up to 18 months after Pfizer BNT162b2 vaccination, in individuals with or without BA.1/BA.2 breakthrough infection. We measured neutralization of the ancestral D614G lineage, Delta and Omicron BA.1, BA.2, BA.5 variants in 300 sera and 35 nasal swabs from 27 individuals. Findings Upon vaccination, serum Nab titers were reduced by 10-, 15- and 25-fold for BA.1, BA.2 and BA.5, respectively, compared with D614G. We estimated that after boosting, the duration of neutralization was markedly shortened from 11.5 months with D614G to 5.5 months with BA.5. After breakthrough, we observed a sharp increase of Nabs against Omicron subvariants, followed by a plateau and a slow decline after 5-6 months. In nasal swabs, infection, but not vaccination, triggered a strong IgA response and a detectable Omicron neutralizing activity. Conclusions Thus, BA.5 spread is partly due to abbreviated vaccine efficacy, particularly in individuals who were not infected with previous Omicron variants. Funding Work in OS lab is funded by Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, Fondation pour la Recherche Médicale (FRM), ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, ANR Coronamito, and IDISCOVR. Laboratoire d’Excellence ‘Integrative Biology of Emerging Infectious Diseases’ (grant no. ANR-10-LABX-62-IBEID) and the NIH PICREID (grant no U01AI151758). Graphical Planas et al analyze the extent and duration of the neutralizing antibody response following vaccination with Pfizer BNT162b2 mRNA in the sera and nasal swabs from individuals with or without Omicron breakthrough infection, finding a short duration of neutralization against BA.5 after boosting and strong IgA response upon breakthrough infection.

5.
J Virol ; 96(19): e0130122, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2038240

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remained genetically stable during the first 3 months of the pandemic, before acquiring a D614G spike mutation that rapidly spread worldwide and then generating successive waves of viral variants with increasingly high transmissibility. We set out to evaluate possible epistatic interactions between the early-occurring D614G mutation and the more recently emerged cleavage site mutations present in spike of the Alpha, Delta, and Omicron variants of concern. The P681H/R mutations at the S1/S2 cleavage site increased spike processing and fusogenicity but limited its incorporation into pseudoviruses. In addition, the higher cleavage rate led to higher shedding of the spike S1 subunit, resulting in a lower infectivity of the P681H/R-carrying pseudoviruses compared to those expressing the Wuhan wild-type spike. The D614G mutation increased spike expression at the cell surface and limited S1 shedding from pseudovirions. As a consequence, the D614G mutation preferentially increased the infectivity of P681H/R-carrying pseudoviruses. This enhancement was more marked in cells where the endosomal route predominated, suggesting that more stable spikes could better withstand the endosomal environment. Taken together, these findings suggest that the D614G mutation stabilized S1/S2 association and enabled the selection of mutations that increased S1/S2 cleavage, leading to the emergence of SARS-CoV-2 variants expressing highly fusogenic spikes. IMPORTANCE The first SARS-CoV-2 variant that spread worldwide in early 2020 carried a D614G mutation in the viral spike, making this protein more stable in its cleaved form at the surface of virions. The Alpha and Delta variants, which spread in late 2020 and early 2021, respectively, proved increasingly transmissible and pathogenic compared to the original strain. Interestingly, Alpha and Delta both carried the mutations P681H/R in a cleavage site that made the spike more cleaved and more efficient at mediating viral fusion. We show here that variants with increased spike cleavage due to P681H/R were even more dependent on the stabilizing effect of the D614G mutation, which limited the shedding of cleaved S1 subunits from viral particles. These findings suggest that the worldwide spread of the D614G mutation was a prerequisite for the emergence of more pathogenic SARS-CoV-2 variants with highly fusogenic spikes.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
6.
EClinicalMedicine ; 51: 101576, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1956126

ABSTRACT

Background: The protective immunity against omicron following a BNT162b2 Pfizer booster dose among elderly individuals (ie, those aged >65 years) is not well characterised. Methods: In a community-based, prospective, longitudinal cohort study taking place in France in which 75 residents from three nursing homes were enrolled, we selected 38 residents who had received a two-dose regimen of mRNA vaccine and a booster dose of Pfizer BNT162b2 vaccine. We excluded individuals that did not receive three vaccine doses or did not have available sera samples. We measured anti-S IgG antibodies and neutralisation capacity in sera taken 56 (28-68) and 55 (48-64) days (median (range)) after the 2nd and 3rd vaccine doses, respectively. Antibodies targeting the SARS-CoV-2 Spike protein were measured with the S-Flow assay as binding antibody units per milliliter (BAU/mL). Neutralising activities in sera were measured as effective dilution 50% (ED50) with the S-Fuse assay using authentic isolates of delta and omicron BA.1. Findings: Among the 38 elderly individuals recruited to the cohort study between November 23rd, 2020 and April 29th, 2021, with median age of 88 (range 72-101) years, 30 (78.95%) had been previously infected with SARS-CoV-2. After three vaccine doses, serum neutralising activity was lower against omicron BA.1 (median ED50 of 774.5, range 15.0-34660.0) than the delta variant (median ED50 of 4972.0, range 213.7-66340.0), and higher among previously infected (ie, convalescent; median ED50 against omicron: 1088.0, range 32.6-34660.0) compared with infection-naive residents (median ED50 against omicron: 188.4, range 15.0-8918.0). During the French omicron wave in December 2021-January 2022, 75% (6/8) of naive residents were infected, compared to 25% (7/30) of convalescent residents (P=0.0114). Anti-Spike antibody levels and neutralising activity against omicron BA.1 after a third BNT162b2 booster dose were lower in those with breakthrough BA.1 infection (n=13) compared with those without (n=25), with a median of 1429.9 (range 670.9-3818.3) BAU/mL vs 2528.3 (range 695.4-8832.0) BAU/mL (P=0.029) and a median ED50 of 281.1 (range 15.0-2136.0) vs 1376.0 (range 32.6-34660.0) (P=0.0013), respectively. Interpretation: This study shows that elderly individuals who received three vaccine doses elicit neutralising antibodies against the omicron BA.1 variant of SARS-CoV-2. Elderly individuals who had also been previously infected showed higher neutralising activity compared with naive individuals. Yet, breakthrough infections with omicron occurred. Individuals with breakthrough infections had significantly lower neutralising titers compared to individuals without breakthrough infection. Thus, a fourth dose of vaccine may be useful in the elderly population to increase the level of neutralising antibodies and compensate for waning immunity. Funding: Institut Pasteur, Fondation pour la Recherche Médicale (FRM), European Health Emergency Preparedness and Response Authority (HERA), Agence nationale de recherches sur le sida et les hépatites virales - Maladies Infectieuses Emergentes (ANRS-MIE), Agence nationale de la recherche (ANR), Assistance Publique des Hôpitaux de Paris (AP-HP) and Fondation de France.

7.
J Exp Med ; 219(7)2022 07 04.
Article in English | MEDLINE | ID: covidwho-1890799

ABSTRACT

Memory B-cell and antibody responses to the SARS-CoV-2 spike protein contribute to long-term immune protection against severe COVID-19, which can also be prevented by antibody-based interventions. Here, wide SARS-CoV-2 immunoprofiling in Wuhan COVID-19 convalescents combining serological, cellular, and monoclonal antibody explorations revealed humoral immunity coordination. Detailed characterization of a hundred SARS-CoV-2 spike memory B-cell monoclonal antibodies uncovered diversity in their repertoire and antiviral functions. The latter were influenced by the targeted spike region with strong Fc-dependent effectors to the S2 subunit and potent neutralizers to the receptor-binding domain. Amongst those, Cv2.1169 and Cv2.3194 antibodies cross-neutralized SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2. Cv2.1169, isolated from a mucosa-derived IgA memory B cell demonstrated potency boost as IgA dimers and therapeutic efficacy as IgG antibodies in animal models. Structural data provided mechanistic clues to Cv2.1169 potency and breadth. Thus, potent broadly neutralizing IgA antibodies elicited in mucosal tissues can stem SARS-CoV-2 infection, and Cv2.1169 and Cv2.3194 are prime candidates for COVID-19 prevention and treatment.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Immunoglobulin A , Immunoglobulin G , Spike Glycoprotein, Coronavirus
8.
Nat Med ; 28(6): 1297-1302, 2022 06.
Article in English | MEDLINE | ID: covidwho-1758268

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients' sera.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , Humans , Membrane Glycoproteins/genetics , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
9.
EBioMedicine ; 77: 103934, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1739673

ABSTRACT

BACKGROUND: SARS-CoV-2 lineages are continuously evolving. As of December 2021, the AY.4.2 Delta sub-lineage represented 20 % of sequenced strains in the UK and had been detected in dozens of countries. It has since then been supplanted by Omicron. The AY.4.2 spike displays three additional mutations (T95I, Y145H and A222V) in the N-terminal domain when compared to the original Delta variant (B.1.617.2) and remains poorly characterized. METHODS: We compared the Delta and the AY.4.2 spikes, by assessing their binding to antibodies and ACE2 and their fusogenicity. We studied the sensitivity of an authentic AY.4.2 viral isolate to neutralizing antibodies. FINDINGS: The AY.4.2 spike exhibited similar binding to all the antibodies and sera tested, and similar fusogenicity and binding to ACE2 than the ancestral Delta spike. The AY.4.2 virus was slightly less sensitive than Delta to neutralization by a panel of monoclonal antibodies; noticeably, the anti-RBD Imdevimab showed incomplete neutralization. Sensitivity of AY.4.2 to sera from vaccinated individuals was reduced by 1.3 to 3-fold, when compared to Delta. INTERPRETATION: Our results suggest that mutations in the NTD remotely impair the efficacy of anti-RBD antibodies. The spread of AY.4.2 was not due to major changes in spike fusogenicity or ACE2 binding, but more likely to a partially reduced neutralization sensitivity. FUNDING: The work was funded by Institut Pasteur, Fondation pour la Recherche Médicale, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute, Labex IBEID, ANR/FRM Flash Covid PROTEO-SARS-CoV-2 and IDISCOVR.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Viral , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
10.
J Allergy Clin Immunol Pract ; 10(5): 1356-1364.e2, 2022 05.
Article in English | MEDLINE | ID: covidwho-1654665

ABSTRACT

BACKGROUND: Mast cells are key players in innate immunity and the TH2 adaptive immune response. The latter counterbalances the TH1 response, which is critical for antiviral immunity. Clonal mast cell activation disorders (cMCADs, such as mastocytosis and clonal mast cell activation syndrome) are characterized by abnormal mast cell accumulation and/or activation. No data on the antiviral immune response in patients with MCADs have been published. OBJECTIVE: To study a comprehensive range of outcomes in patients with cMCAD with PCR- or serologically confirmed coronavirus disease 2019 and to characterize the specific anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune response in this setting. METHODS: Clinical follow-up and outcome data were collected prospectively over a 12-month period by members of the French Centre de Référence des Mastocytoses rare disease network. Anti-SARS-CoV-2-specific T-cell activity was measured with an ELISA, and humoral responses were evaluated by assaying circulating levels of specific IgG, IgA, and neutralizing antibodies. RESULTS: Overall, 32 patients with cMCAD were evaluated. None required noninvasive or mechanical ventilation. Two patients were admitted to hospital for oxygen and steroid therapy. The SARS-CoV-2-specific immune response was characterized in 21 of the 32 patients. Most had high counts of circulating SARS-CoV-2-specific, IFN-γ-producing T cells and high titers of neutralizing antispike IgGs. The patients frequently showed spontaneous T-cell IFN-γ production in the absence of stimulation; this production was correlated with basal circulating tryptase levels (a marker of the mast cell burden). CONCLUSIONS: Patients with cMCADs might not be at risk of severe coronavirus disease 2019, perhaps due to their spontaneous production of IFN-γ.


Subject(s)
COVID-19 , Mastocytosis , Antibodies, Viral , Antiviral Agents , Humans , Immunity , Mast Cells , SARS-CoV-2
11.
Ann Rheum Dis ; 81(5): 720-728, 2022 05.
Article in English | MEDLINE | ID: covidwho-1622018

ABSTRACT

OBJECTIVES: The emergence of strains of SARS-CoV-2 exhibiting increase viral fitness and immune escape potential, such as the Delta variant (B.1.617.2), raises concerns in immunocompromised patients. We aimed to evaluate seroconversion, cross-neutralisation and T-cell responses induced by BNT162b2 in immunocompromised patients with systemic inflammatory diseases. METHODS: Prospective monocentric study including patients with systemic inflammatory diseases and healthcare immunocompetent workers as controls. Primary endpoints were anti-spike antibodies levels and cross-neutralisation of Alpha and Delta variants after BNT162b2 vaccine. Secondary endpoints were T-cell responses, breakthrough infections and safety. RESULTS: Sixty-four cases and 21 controls not previously infected with SARS-CoV-2 were analysed. Kinetics of anti-spike IgG after BNT162b2 vaccine showed lower and delayed induction in cases, more pronounced with rituximab. Administration of two doses of BNT162b2 generated a neutralising response against Alpha and Delta in 100% of controls, while sera from only one of rituximab-treated patients neutralised Alpha (5%) and none Delta. Other therapeutic regimens induced a partial neutralising activity against Alpha, even lower against Delta. All controls and cases except those treated with methotrexate mounted a SARS-CoV-2 specific T-cell response. Methotrexate abrogated T-cell responses after one dose and dramatically impaired T-cell responses after two doses of BNT162b2. Third dose of vaccine improved immunogenicity in patients with low responses. CONCLUSION: Rituximab and methotrexate differentially impact the immunogenicity of BNT162b2, by impairing B-cell and T-cell responses, respectively. Delta fully escapes the humoral response of individuals treated with rituximab. These findings support efforts to improve BNT162b2 immunogenicity in immunocompromised individuals (ClinicalTrials.gov number, NCT04870411).


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunocompromised Host , Immunogenicity, Vaccine , Methotrexate , Prospective Studies , Rituximab , SARS-CoV-2
12.
Nature ; 602(7898): 671-675, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616994

ABSTRACT

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1-3. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike-located mostly in the N-terminal domain and the receptor-binding domain-that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development4, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Immune Evasion/immunology , Immunization, Secondary , SARS-CoV-2/immunology , Adult , Antibodies, Monoclonal/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , Belgium , COVID-19/immunology , COVID-19/transmission , ChAdOx1 nCoV-19/administration & dosage , ChAdOx1 nCoV-19/immunology , Convalescence , Female , Humans , Male , Mutation , Neutralization Tests , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Travel
14.
EBioMedicine ; 73: 103637, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1471944

ABSTRACT

BACKGROUND: The dynamics of SARS-CoV-2 alpha variant shedding and immune responses at the nasal mucosa remain poorly characterised. METHODS: We measured infectious viral release, antibodies and cytokines in 426 PCR+ nasopharyngeal swabs from individuals harboring non-alpha or alpha variants. FINDINGS: With both lineages, viral titers were variable, ranging from 0 to >106 infectious units. Rapid antigenic diagnostic tests were positive in 94% of samples with infectious virus. 68 % of individuals carried infectious virus within two days after onset of symptoms. This proportion decreased overtime. Viable virus was detected up to 14 days. Samples containing anti-spike IgG or IgA did not generally harbor infectious virus. Ct values were slightly but not significantly lower with alpha. This variant was characterized by a fast decrease of infectivity overtime and a marked release of 13 cytokines (including IFN-b, IP-10 and IL-10). INTERPRETATION: The alpha variant displays modified viral decay and cytokine profiles at the nasopharyngeal mucosae during symptomatic infection. FUNDING: This retrospective study has been funded by Institut Pasteur, ANRS, Vaccine Research Institute, Labex IBEID, ANR/FRM and IDISCOVR, Fondation pour la Recherche Médicale.


Subject(s)
Cytokines/metabolism , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Adult , Aged , Antibodies, Viral/metabolism , COVID-19/pathology , COVID-19/virology , Female , Humans , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Male , Middle Aged , Retrospective Studies
15.
J Infect Dis ; 224(6): 983-988, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1455308

ABSTRACT

We measured anti-spike (S), nucleoprotein (N), and neutralizing antibodies in sera from 308 healthcare workers with a positive reverse-transcription quantitative polymerase chain reaction result for severe acute respiratory syndrome coronavirus 2 and with mild disease, collected at 2 timepoints up to 6 months after symptom onset. At month 1, anti-S and -N antibody levels were higher in male participants aged >50 years and participants with a body mass index (BMI) >25 kg/m2. At months 3-6, anti-S and anti-N antibodies were detected in 99% and 59% of individuals, respectively. Anti-S antibodies and neutralizing antibodies declined faster in men than in women, independent of age and BMI, suggesting an association of sex with evolution of the humoral response.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/immunology , Sex Characteristics , Adult , Antibodies, Viral/blood , Female , HEK293 Cells , Health Personnel , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
16.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: covidwho-1365116

ABSTRACT

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


Subject(s)
COVID-19/immunology , Immune Checkpoint Inhibitors/immunology , Melanoma/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adaptive Immunity/drug effects , Adaptive Immunity/immunology , Aged , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/virology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Melanoma/complications , Melanoma/drug therapy , Middle Aged , Prospective Studies , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/virology
17.
Open Forum Infect Dis ; 8(8): ofab369, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1352260

ABSTRACT

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) acquisition after vaccination with BNT162b2 have been described, but the risk of secondary transmission from fully vaccinated individuals remains ill defined. Herein we report a confirmed transmission of SARS-CoV-2 alpha variant (B.1.1.7) from a symptomatic immunocompetent woman 4 weeks after her second dose of BNT162b2, despite antispike seroconversion.

18.
Nature ; 596(7871): 276-280, 2021 08.
Article in English | MEDLINE | ID: covidwho-1301174

ABSTRACT

The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1-5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2-also termed the Delta variant-is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , Convalescence , Immune Evasion/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , France , Humans , India/epidemiology , Male , Middle Aged , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
19.
Neuroepidemiology ; 55(5): 381-386, 2021.
Article in English | MEDLINE | ID: covidwho-1290486

ABSTRACT

INTRODUCTION: Olfactory and taste disorders (OTDs) have been reported in COVID-19 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the mechanisms of which remain unclear. We conducted a detailed analysis of OTDs as part of 2 seroepidemiological investigations of COVID-19 outbreaks. METHODS: Two retrospective cohort studies were conducted in a high school and primary schools of Northern France following a COVID-19 epidemic in February-March 2020. Students, their relatives, and school staff were included. Anti-SARS-CoV-2 antibodies were identified using a flow-cytometry-based assay detecting anti-S IgG. RESULTS: Among 2,004 participants (median [IQR] age: 31 [11-43] years), 303 (15.2%) tested positive for SARS-CoV-2 antibodies. OTDs were present in 91 (30.0%) and 92 (30.3%) of them, respectively, and had 85.1 and 78.0% positive predictive values for SARS-CoV-2 infection, respectively. In seropositive participants, OTDs were independently associated with an age above 18 years, female gender, fatigue, and headache. CONCLUSION: This study confirms the higher frequency of OTDs in females than males and adults than children. Their high predictive value for the diagnosis of COVID-19 suggests that they should be systematically searched for in patients with respiratory symptoms, fever, or headache. The association of OTDs with headache, not previously reported, suggests that they share a common mechanism, which deserves further investigation.


Subject(s)
COVID-19/complications , Olfaction Disorders/etiology , Taste Disorders/etiology , Adolescent , Adult , Antibodies, Viral/analysis , Child , Humans , Retrospective Studies , Risk Factors , Young Adult
20.
Cell Rep Med ; 2(5): 100275, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1193507

ABSTRACT

Many SARS-CoV-2-infected individuals remain asymptomatic. Little is known about the extent and quality of their antiviral humoral response. Here, we analyze antibody functions in 52 asymptomatic infected individuals, 119 mildly symptomatic, and 21 hospitalized patients with COVID-19. We measure anti-spike immunoglobulin G (IgG), IgA, and IgM levels with the S-Flow assay and map IgG-targeted epitopes with a Luminex assay. We also evaluate neutralization, complement deposition, and antibody-dependent cellular cytotoxicity (ADCC) using replication-competent SARS-CoV-2 or reporter cell systems. We show that COVID-19 sera mediate complement deposition and kill infected cells by ADCC. Sera from asymptomatic individuals neutralize the virus, activate ADCC, and trigger complement deposition. Antibody levels and functions are lower in asymptomatic individuals than they are in symptomatic cases. Antibody functions are correlated, regardless of disease severity. Longitudinal samplings show that antibody functions follow similar kinetics of induction and contraction. Overall, asymptomatic SARS-CoV-2 infection elicits polyfunctional antibodies neutralizing the virus and targeting infected cells.


Subject(s)
Antibodies, Viral/blood , COVID-19/pathology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Antigen-Antibody Reactions , Asymptomatic Diseases , COVID-19/virology , Complement System Proteins/metabolism , Epitopes/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Killer Cells, Natural/immunology , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL